Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(7): e0288392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37450471

RESUMO

The Dengue virus (DENV) constitutes a major vector borne virus disease worldwide. Prediction of the DENV spread dynamics, prevalence and infection rates are crucial elements to guide the public health services effort towards meaningful actions. The existence of four DENV serotypes further complicates the virus proliferation forecast. The different serotypes have varying clinical impacts, and the symptomatology of the infection is dependent on the infection history of the patient. Therefore, changes in the prevalent DENV serotype found in one location have a profound impact on the regional public health. The prediction of the spread and intensity of infection of the individual DENV serotypes in specific locations would allow the authorities to plan local pesticide spray to control the vector as well as the purchase of specific antibody therapy. Here we used a mathematical model to predict serotype-specific DENV prevalence and overall case burden in Mexico.


Assuntos
Vírus da Dengue , Dengue , Humanos , Sorogrupo , México/epidemiologia , Anticorpos Antivirais , Modelos Teóricos
2.
Nat Prod Res ; 36(4): 1123-1128, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33342288

RESUMO

Agave marmorata Roezl is an endemic succulent specie from the Oaxaca-Puebla area of Mexico. This plant is a medicinal recourse and contain a rich variety of saponins-type compounds with multiples biological effects. Some of them have been shown to be anticancer, antibacterial, or having anti-inflammatory and immunoregulation effects. This paper is the first scientific report to describe the pharmacological activity and chemistry of the saponin smilagenin-3-O-[ß-D-glucopyranosyl (1→2)-ß-D-galactopyranoside] (1), isolated from Agave marmorata Roezl. Saponin (1) displayed immunomodulating activity when assayed on cultured macrophages. It inhibits NO production (EC50 = 5.6 mg/ml, Emax = 101%), as well as NF-κB expression (EC50 = 0.086 mg/ml, Emax = 90%). Using bioinformatic molecular docking, we identified a new smilagenin- PI3K kinase interaction site.


Assuntos
Agave , NF-kappa B/antagonistas & inibidores , Saponinas , Fator de Transcrição AP-1/antagonistas & inibidores , Agave/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Saponinas/química , Saponinas/farmacologia
3.
Front Immunol ; 12: 584660, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248924

RESUMO

The immune response of Anopheles mosquitoes to Plasmodium invasion has been extensively studied and shown to be mediated mainly by the nitric oxide synthase (NOS), dual oxidase (DUOX), phenoloxidase (PO), and antimicrobial peptides activity. Here, we studied the correlation between a heat shock insult, transcription of immune response genes, and subsequent susceptibility to Plasmodium berghei infection in Anopheles albimanus. We found that transcript levels of many immune genes were drastically affected by the thermal stress, either positively or negatively. Furthermore, the transcription of genes associated with modifications of nucleic acid methylation was affected, suggesting an increment in both DNA and RNA methylation. The heat shock increased PO and NOS activity in the hemolymph, as well as the transcription of several immune genes. As consequence, we observed that heat shock increased the resistance of mosquitoes to Plasmodium invasion. The data provided here could help the understanding of infection transmission under the ever more common heat waves.


Assuntos
Anopheles/imunologia , Anopheles/parasitologia , Resposta ao Choque Térmico/imunologia , Hemolinfa/parasitologia , Malária/imunologia , Plasmodium berghei/imunologia , Animais , Anopheles/genética , Feminino , Resposta ao Choque Térmico/genética , Imunidade/genética , Malária/parasitologia
4.
Sci Rep ; 11(1): 11258, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045618

RESUMO

The cuticular hydrocarbon (CHC) profile reflects the insects' physiological states. These include age, sex, reproductive stage, and gravidity. Environmental factors such as diet, relative humidity or exposure to insecticides also affect the CHC composition in mosquitoes. In this work, the CHC profile was analyzed in two Anopheles albimanus phenotypes with different degrees of susceptibility to Plasmodium, the susceptible-White and resistant-Brown phenotypes, in response to the two dietary regimes of mosquitoes: a carbon-rich diet (sugar) and a protein-rich diet (blood) alone or containing Plasmodium ookinetes. The CHCs were analyzed by gas chromatography coupled to mass spectrometry or flame ionization detection, identifying 19 CHCs with chain lengths ranging from 20 to 37 carbons. Qualitative and quantitative changes in CHCs composition were dependent on diet, a parasite challenge, and, to a lesser extent, the phenotype. Blood-feeding caused up to a 40% reduction in the total CHC content compared to sugar-feeding. If blood contained ookinetes, further changes in the CHC profile were observed depending on the Plasmodium susceptibility of the phenotypes. Higher infection prevalence caused greater changes in the CHC profile. These dietary and infection-associated modifications in the CHCs could have multiple effects on mosquito fitness, impacts on disease transmission, and tolerance to insecticides.


Assuntos
Anopheles/metabolismo , Anopheles/parasitologia , Dieta , Animais , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos/metabolismo , Fenótipo , Plasmodium
5.
PLoS One ; 16(4): e0248765, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33819302

RESUMO

Since their first sequencing 40 years ago, Dengue virus (DENV) genotypes have shown extreme coherence regarding the serotype class they encode. Considering that DENV is a ribonucleic acid (RNA) virus with a high mutation rate, this behavior is intriguing. Here, we explore the effect of various parameters on likelihood of new serotype emergence. In order to determine the time scales of such an event, we used a Timed Markov Transmission Model to explore the influences of sylvatic versus peri-urban transmission, viral mutation rate, and vertical transmission on the probabilities of novel serotype emergence. We found that around 1 000 years are required for a new serotype to emerge, consistent with phylogenetic analysis of extant dengue serotypes. Furthermore, we show that likelihood of establishing chains of mosquito-human-mosquito infection, known as consolidation, is the primary factor which constrains novel serotype emergence. Our work illustrates the restrictions on and provides a mechanistic explanation for the low probability of novel dengue virus serotype emergence and the low number of observed DENV serotypes.


Assuntos
Vírus da Dengue/genética , Dengue/imunologia , Taxa de Mutação , Aedes/virologia , Animais , Dengue/virologia , Vírus da Dengue/imunologia , Vírus da Dengue/patogenicidade , Evolução Molecular , Genótipo , Humanos , Cadeias de Markov , Mosquitos Vetores , Filogenia , Sorogrupo , Doenças Transmitidas por Vetores/genética , Doenças Transmitidas por Vetores/transmissão
6.
Parasitol Int ; 80: 102242, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33152548

RESUMO

Malaria transmission depends on the parasites' successful invasion of the mosquito. This is achieved by the ookinete, a motile zygote that forms in the blood bolus after the mosquito takes an infectious blood meal. The ookinete invades the midgut epithelium and strongly attaches to the basal lamina, differentiating into an oocyst that produces the vertebrate-invasive sporozoites. Despite their importance, the ookinete and the oocyst are the least studied stages of the parasite. Much of what we know about the ookinete comes from in vitro experiments, which are hindered by the concomitant contamination with blood cells and other parasite stages. Although methods to purify them exist, they vary in terms of yield, costs, and difficulty to perform. A method for ookinete purification taking advantage of their adhesive properties was herein developed. The method consists of covering any culture-suitable surface with extracellular matrix gel, after which the ookinete culture is incubated on the gel to allow for ookinete attachment. The contaminant cells are then simply washed away. This procedure results in purer and less stressed ookinete preparations, which, by the nature of the method, are ready for oocyst production. Furthermore, it allows for micro-purifications using only 1 µl of blood, opening the possibility to make axenic ookinete cultures without sacrificing mice.


Assuntos
Matriz Extracelular/química , Técnicas In Vitro/métodos , Plasmodium berghei/isolamento & purificação , Géis/química , Oocistos
7.
Biochimie ; 170: 173-202, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31978418

RESUMO

In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.


Assuntos
Antibacterianos/metabolismo , Membrana Celular/metabolismo , Lipídeos/química , Lipopeptídeos/metabolismo , Animais , Biofísica , Humanos
8.
Front Immunol ; 10: 3025, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31993053

RESUMO

Epigenetic mechanisms such as DNA methylation and histone post-translational modifications are fundamental for the phenotypic plasticity of insects during their interaction with the environment. In response to environmental cues, the methylation pattern in DNA is dynamically remodeled to achieve an epigenetic control of gene expression. DNA methylation is the focus of study in insects for its evolutionarily conserved character; however, there is scant knowledge about the epigenetic regulation in vector mosquitoes, especially during their infection by parasites. The aim of the present study was to evaluate the participation of DNA methylation in the immune response of Anopheles albimanus to a Plasmodium infection. For this, we first investigated the presence of a fully functional DNA methylation system in A. albimanus by assessing its potential role in larval development. Subsequently, we evaluated the transcriptional response to Plasmodium berghei of two mosquito phenotypes with different degrees of susceptibility to the parasite, in a scenario where their global DNA methylation had been pharmacologically inhibited. Our study revealed that A. albimanus has a functional DNA methylation system that is essential to larval viability, and that is also responsive to feeding and parasite challenges. The pharmacological erasure of the methylome with azacytidine or decitabine abolished the divergent responses of both mosquito phenotypes, leading to a transcriptionally similar response upon parasite challenge. This response was more specific, and the infection load in both phenotypes was lowered. Our findings suggest that DNA methylation may constitute a key factor in vector competence, and a promising target for preventing malaria transmission.


Assuntos
Anopheles/genética , Anopheles/imunologia , Anopheles/parasitologia , Resistência à Doença/genética , Malária/veterinária , Plasmodium berghei/imunologia , Animais , Metilação de DNA , Resistência à Doença/imunologia , Intestinos/imunologia , Malária/genética , Malária/imunologia
9.
PLoS One ; 13(8): e0196047, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30080868

RESUMO

Dengue virus has shown a complex pattern of transmission across Latin America over the last two decades. In an attempt to explain the permanence of the disease in regions subjected to drought seasons lasting over six months, various hypotheses have been proposed. These include transovarial transmission, forest reservoirs and asymptomatic human virus carriers. Dengue virus is endemic in Mexico, a country in which half of the population is seropositive. Seropositivity is a risk factor for Dengue Hemorrhagic Fever upon a second encounter with the dengue virus. Since Dengue Hemorrhagic Fever can cause death, it is important to develop epidemiological mathematical tools that enable policy makers to predict regions potentially at risk for a dengue epidemic. We formulated a mathematical model of dengue transmission, considering both human behavior and environmental conditions pertinent to the transmission of the disease. When data on past human population density, temperature and rainfall were entered into this model, it provided an accurate picture of the actual spread of dengue over recent years in four states (representing two climactic conditions) in Mexico.


Assuntos
Dengue/epidemiologia , Surtos de Doenças , Estágios do Ciclo de Vida/fisiologia , Conceitos Meteorológicos , Modelos Teóricos , Mosquitos Vetores/crescimento & desenvolvimento , Aedes/crescimento & desenvolvimento , Aedes/virologia , Animais , Demografia , Dengue/transmissão , Surtos de Doenças/prevenção & controle , Entomologia/métodos , Projetos de Pesquisa Epidemiológica , Feminino , Previsões/métodos , Humanos , América Latina/epidemiologia , México/epidemiologia , Mosquitos Vetores/virologia , Estações do Ano
10.
Front Microbiol ; 9: 801, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755433

RESUMO

Aedes aegypti is the main vector of Dengue Virus, carrying the virus during the whole mosquito life post-infection. Few mosquito fitness costs have been associated to the virus infection, thereby allowing for a swift dissemination. In order to diminish the mosquito population, public health agency use persistent chemicals with environmental impact for disease control. Most countries barely use biological controls, if at all. With the purpose of developing novel Dengue control strategies, a detailed understanding of the unexplored virus-vector interactions is urgently needed. Damage induced (through tissue injury or bacterial invasion) DNA duplication (endoreplication) has been described in insects during epithelial cells renewal. Here, we delved into the mosquito midgut tissue ability to synthesize DNA de novo; postulating that Dengue virus infection could trigger a protective endoreplication mechanism in some mosquito cells. We hypothesized that the Aedes aegypti orthologue of the Drosophila melanogaster hindsight gene (not previously annotated in Aedes aegypti transcriptome/genome) is part of the Delta-Notch pathway. The activation of this transcriptional cascade leads to genomic DNA endoreplication. The amplification of the genomic copies of specific genes ultimately limits the viral spreading during infection. Conversely, inhibiting DNA synthesis capacity, hence endoreplication, leads to a higher viral replication.

11.
Dev Comp Immunol ; 84: 28-36, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29408269

RESUMO

Priming is the conceptual term defining memory phenomenon in innate immune response. Numerous examples of enhanced secondary immune response have been described in diverse taxa of invertebrates; which naturally lacks memory response. In mosquitoes, a previous non-lethal challenge with some specific pathogens modify their immune response against the same microorganism; developing an improved antimicrobial reaction. In this work, we explore the ability of Aedes aegypti to mount a higher antiviral response upon a second oral DENV challenge. When previously challenged with inactive virus, we observed that the posterior infection showed a diminished number of DENV infectious particles in midguts and carcasses. In challenged tissues, we detected higher de novo midgut DNA synthesis than control group, as determined by DNA incorporation of 5-bromo-2-deoxyuridine. We demonstrated that inactive DENV particle are capable to induce DNA synthesis levels comparable to infective DENV. We considered the Drosophila melanogaster hindsight and Delta-Notch mosquitoes orthologues as potential de novo DNA synthesis pathway components (as observed in fly oocyte development and midgut tissue renewal). We showed that Aedes aegypti hindsight transcript relative expression levels were higher than control during DENV infection and inactive DENV particle alimentation. Also, Aedes aegypti second challenge with active DENV induced higher hindsight, Delta and Notch transcriptions in the primed mosquitoes (compared with the primary infection levels). Considering that the mosquito de novo DNA synthesis is concomitant to viral particle reduction, this finding opens a new perspective on the mechanisms underlying the vector antiviral immune response and the effector molecules involved.


Assuntos
Aedes/imunologia , Vírus da Dengue/fisiologia , Dengue/imunologia , Intestinos/virologia , Imunidade Adaptativa , Aedes/virologia , Animais , DNA , Humanos , Imunização Secundária , Memória Imunológica , Mosquitos Vetores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Carga Viral , Vírion/metabolismo
12.
Parasit Vectors ; 9(1): 542, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27724938

RESUMO

BACKGROUND: The behaviour of Anopheles spp. mosquitoes, vectors for Plasmodium parasites, plays a crucial role in the propagation of malaria to humans. Consequently, it is important to understand how the behaviour of these mosquitoes is influenced by the interaction between the brain and immunological status. The nervous system is intimately linked to the immune and endocrine systems. There is evidence that the malaria parasite alters the function of these systems upon infecting the mosquito. Although there is a complex molecular interplay between the Plasmodium parasite and Anopheles mosquito, little is known about the neuronal alteration triggered by the parasite invasion. The aim of this study was to analyse the modification of the proteomic profile in the An. albimanus brain during the early phase of the Plasmodium berghei invasion. RESULTS: At 24 hours of the P. berghei invasion, the mosquito brain showed an increase in the concentration of proteins involved in the cellular metabolic pathway, such as ATP synthase complex alpha and beta, malate dehydrogenase, alanine transaminase, enolase and vacuolar ATP synthase. There was also a rise in the levels of proteins with neuronal function, such as calreticulin, mitofilin and creatine kinase. Concomitantly, the parasite invasion repressed the expression of synapse-associated proteins, including enolyl CoA hydratase, HSP70 and ribosomal S60 proteins. CONCLUSIONS: Identification of upregulated and downregulated protein expression in the mosquito brain 24 hours after Plasmodium invaded the insect midgut paves the way to better understanding the regulation of the neuro-endocrine-immune system in an insect model during parasite infection.


Assuntos
Anopheles/metabolismo , Anopheles/parasitologia , Interações Hospedeiro-Parasita , Plasmodium berghei/fisiologia , Complexos de ATP Sintetase/metabolismo , Alanina Transaminase/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/parasitologia , Encéfalo/patologia , Calreticulina/metabolismo , Creatina Quinase Forma MM/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Malato Desidrogenase/metabolismo , Neurônios/metabolismo , Neurônios/parasitologia , Fosfopiruvato Hidratase/metabolismo , Proteômica
13.
Infect Genet Evol ; 24: 25-33, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24614506

RESUMO

The insect immune response strategy has generally been considered bipolar: either resistance or death. Lately, a much broader and subtler landscape has emerged: occurrence of tolerance and resistance has been described as a host-regulated immune response. However, little is known about the interplay between the immune response strategy mounted by the insect during infection and the damage produced by the pathogen. Based on the Matzinger model of danger/damage, we propose a quantitative model to explain the occurrence of either resistance or tolerance. We discuss the features to be analyzed and describe the terms of reference by which, with basic models, we distinguish between immune strategies. Pathogen type and mixed infections are also contemplated. We hope this analysis will give new perspective, from an evolutionary ecology standpoint, on immune response measurements in the context of insect infection, and on the importance of (non-self or self) damage.


Assuntos
Resistência à Doença/imunologia , Interações Hospedeiro-Patógeno/imunologia , Tolerância Imunológica/imunologia , Insetos/imunologia , Animais
14.
Peptides ; 53: 202-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23880546

RESUMO

Cecropin 3 (Ccrp3) is an antimicrobial peptide from Anopheles albimanus, which is expressed during Plasmodium berghei infection. Here, we report that synthetic Ccrp3, aside from antibacterial activity, also shows cardio regulatory functions. In rats, Ccrp3 significantly diminishes blood pressure as well as the heartbeat frequency at nanomolar concentration. Ccrp3 affect the rat cardiac muscle mitochondria, inducing uncoupling of oxidative phosphorylation, oxygen consumption and transport of Ca(2). Ccrp3 treatment of the mitochondria causes mitochondrial damage promoting oxidative stress, causing overproduction of reactive oxygen species (ROS) and inhibition of superoxide dismutase. At nM concentration, Ccrp3 inhibits superoxide dismutase activity through direct interaction, diminishing by its enzymatic activity. Ccrp3 induces the release of the pro-apoptotic marker Bax from the mitochondria. Altogether, these results suggest that Ccrp3 pro-oxidative activity on cardiac muscle mitochondria could be responsible for triggering the heartbeat frequency and blood pressure lowering observed the Ccrp3 injected rats.


Assuntos
Cecropinas/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Anopheles , Transporte Biológico/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Cálcio/metabolismo , Masculino , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
15.
Biochem Cell Biol ; 87(6): 845-51, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19935870

RESUMO

Since Hsp90 is a known modulator of HSF1 activity, we examined the effects of two pharmacological inhibitors of Hsp90, novobiocin and geldanamycin, on HSF1 DNA-binding activity in the Xenopus oocyte model system. Novobiocin exhibits antiproliferative activity in culture cells and interacts with a C-terminal ATP-binding pocket on Hsp90, inhibiting Hsp90 autophosphorylation. Treatment of oocytes with novobiocin followed by heat shock results in a dose-dependent decrease in HSF1 DNA-binding and transcriptional activity. Immunoprecipitation experiments demonstrate novobiocin does not alter HSF1 activity through dissociation of Hsp90 from either monomeric or trimerized HSF1, suggesting that the effect of novobiocin on HSF1 is mediated through alterations in Hsp90 autophosphorylation. Geldanamycin binds the N-terminal ATPase site of Hsp90 and inhibits chaperone activity. Geldanamycin treatment of oocytes resulted in a dose-dependent increase in stability of active HSF1 trimers during submaximal heat shock and a delay in disassembly of trimers during recovery. The results suggest that Hsp90 chaperone activity is required for disassembly of HSF1 trimers. The data obtained with novobiocin suggests the C-terminal ATP-binding activity of Hsp90 is required for the initial steps of HSF1 trimerization, whereas the effects of geldanamycin suggest N-terminal ATPase and chaperone activities are required for disassembly of activated trimers. These data provide important insight into the molecular mechanisms by which pharmacological inhibitors of Hsp90 affect the heat shock response.


Assuntos
Benzoquinonas/metabolismo , Inibidores Enzimáticos/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Lactamas Macrocíclicas/metabolismo , Novobiocina/metabolismo , Animais , DNA/metabolismo , Proteínas de Ligação a DNA , Proteínas de Choque Térmico HSP90/metabolismo , Fatores de Transcrição de Choque Térmico , Resposta ao Choque Térmico , Oócitos/citologia , Oócitos/fisiologia , Fatores de Transcrição , Xenopus laevis
16.
J Biol Chem ; 280(32): 28989-96, 2005 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-15967796

RESUMO

The major stress protein transcription factor, heat shock factor (HSF1), is tightly regulated through a multilayered activation-deactivation process involving oligomerization, post-translational modification, and interaction with the heat shock protein (Hsp90)-containing multichaperone complex. Conditions of proteotoxic stress, such as heat shock, trigger reversible assembly of latent HSF1 monomers into DNA-binding homotrimers that bind with high affinity to cognate heat shock elements. Transactivation is a second and independently regulated function of HSF1 that is accompanied by hyperphosphorylation and appears to involve a number of signaling events. Association of HSF1 with Hsp90 chaperone complexes provides additional regulatory complexity, however, not all the co-chaperones have been identified, and the specific molecular interactions throughout the activation/deactivation pathway remain to be determined. Here we demonstrate that protein phosphatase 5 (PP5), a tetratricopeptide domain-containing component of Hsp90-steroid receptor complexes, functions as a negative modulator of HSF1 activity. Physical interactions between PP5 and HSF1-Hsp90 complexes were observed in co-immunoprecipitation and gel mobility supershift experiments. Overexpression of PP5 or activation of endogenous phosphatase activity resulted in diminished HSF1 DNA binding and transcriptional activities, and accelerated recovery. Conversely, microinjection of PP5 antibodies, or inhibition of its phosphatase activity in vivo, significantly delayed trimer disassembly after heat shock. Inhibition of PP5 activity did not activate HSF1 in unstressed cells. These results indicate that PP5 is a negative modulator of HSF1 activity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Animais , Núcleo Celular/metabolismo , Citoplasma/metabolismo , DNA/química , Dimerização , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Fatores de Transcrição de Choque Térmico , Humanos , Immunoblotting , Imunoprecipitação , Oócitos/metabolismo , Monoéster Fosfórico Hidrolases/química , Fosforilação , Plasmídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Dobramento de Proteína , Estrutura Terciária de Proteína , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição , Transcrição Gênica , Xenopus laevis
17.
J Exp Bot ; 56(412): 557-65, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15569706

RESUMO

Previous analysis of actin in a dicotyledonous plant, Phaseolus vulgaris (or common bean), showed very low actin levels in cotyledons but they were concentrated in the embryo axis. Upon imbibition, actin expression increased 5-fold and a maximum of four actin isoforms were observed, two of them transient and two major ones were steadily expressed. In this work, analysis of the actin expression in a monocotyledonous plant, Zea mays (or maize), and over a longer period of germination/growth, showed that striking similarities exist. Actin is present in all the seed components, but it is mainly concentrated in the embryo axis. The expression of maize actin was induced during post-imbibition at both the protein and mRNA levels. Sharp increases in actin appeared from 24-48 h and again from 72-96 h. A more modest and steady actin mRNA increase in expression was observed; however, it did not appear as dramatic as in the case of common bean due to the presence of readily detectable amounts of message in the dry maize seed. The isoform distribution in the dry seed showed a pattern of at least three isovariants of pIs approximately 5.0, 5.1, and 5.2, which were differentially expressed at the various post-imbibition times analysed. Two of the actin isoforms at 48 h post-imbibition cross-reacted with a phosphotyrosine-specific antibody and they are the product of three expressed genes as shown by in vitro translation assays. These data indicate that maize actin protein and mRNA expression is induced upon the trigger of germination, and the isoform expression kinetics and patterns resemble those from bean, suggesting that, in both species, actin expression at these early germination/growth stages is a highly regulated event.


Assuntos
Actinas/biossíntese , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Germinação/fisiologia , Zea mays/metabolismo , Fosforilação , Isoformas de Proteínas/biossíntese , Fatores de Tempo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA